
TCP Performance over ATM on Linux and Windows NTMartin Borriss Uwe DannowskiHermann H�artigDresden University of TechnologyComputer Science DepartmentOperating Systems GroupPhone: +49-351-4638401 Fax: +49-351-4638284Email: fborriss,ud3,haertigg@os.inf.tu-dresden.deKeywords: Performance, TCP, ATM, Operating SystemsAbstractIn today's local area networks ATM is often used asreplacement for slow Ethernet. This work measuresand compares performance of the Transmission Con-trol Protocol (TCP) over ATM on two popular op-erating systems on PC hardware. Throughput andround trip latency of TCP data transfer over bothLinux and Windows NT on identical hardware weremeasured. For throughput measurements, send andreceive performances have been isolated by using afast third-party machine as peer.Firstly, measurements indicated that high-end PChardware can utilize the bandwidth provided by155.52 Mbps ATM network adapters well. Runningthe heavyweight TCP protocol, data rates of up to83% of the bandwidth available have been observed.As a second result, Linux and Windows NT bulkdata throughput were competitive. However, partic-ularly on slow hardware, the Linux implementationconsistently outperformed NT.Finally, signi�cant latency di�erences in the orderof a 50% advantage for Linux were indicated by therequest{response test suite.

1 MotivationPart of the current work of the Operating SystemsGroup at Dresden University of Technology dealswith operating system support for predictable high-speed networking. The ability to estimate resourceutilization by networking protocols and networkingapplications involves �nding upper bounds on possi-ble data throughput and latency, depending on thehardware and protocols used.Furthermore, since the Linux device driver for theATM boards used was written in our group, we werenaturally interested to verify its competitiveness.As discussed in Section 2.2, using TCP over ATMwas expected to be a most challenging test for oper-ating system, protocol and driver software.2 EnvironmentTo make the results as expressive as possible, identi-cal machines have been used. All measurement weredone on both \slow" and \fast" machines by today'sstandards. While measuring, no CPU-intense ap-plications ran concurrently on the participating ma-chines.Additionally, another communication partner, a



Sun-Ultra-1 machine has been included. This wasdone for two reasons:� Particular optimizations, such as proprietaryTCP ow control, would not go completely un-detected in a heterogeneous environment.� Isolation of send and receive performance is pos-sible.The test environment is visualized in Figure 1. Thenext section describes the hardware used in more de-tail.
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Figure 1: Test environment2.1 HardwareThe measurements were performed on o�-the-shelfPentium-100 machines1, Pentium Pro-200 machines2and a Sun Ultra 1 model 200 running SunOS (release5.5.1) as reference machine.All PC machines included FORE PCA-200E PCInetwork interface adapters, the Sun used the SBusversion of the NIC. The boards support a line rate of155.52 Mbps and are capable of AAL5 processing inhardware and bus-master DMA transfer.1256KB Cache 32MByte RAM, ASUS main boards PCI/I-P54NP4D2256KB Cache, 64MByte RAM, ASUS main boards P/I-XP6NP5

All machines were physically connected to a FOREASX-200WG ATM switch using OC-3 optical �ber,the Sun machine was connected via a FORE ASX-200BX switch.2.2 SoftwareSome test machines had both Linux andWindows NTinstalled; others are dedicated Linux and WindowsNT systems on identical hardware.Linux, as a non-commercial monolithic UNIX sys-tem originally for i386-based Intel processors, con-tains full ATM support, including Classical IP overATM, LAN Emulation v1.0, native ATM support viaan ATM API and a exible device driver interface [2].The Linux driver for the network interfaces used hasbeen developed in our group and is freely available [3].For the work presented, the stable kernel 2.0.29, theATM patch 0.31, and the PCA-200E device driver0.2 have been employed.For both Windows NT 4.0 and Solaris the com-mercial ForeThought software has been used, whichincludes hardware driver and IP encapsulation.For our measurements, encapsulation was done ac-cording to the Classical IP model [7]. The ATMswitch functions as ATMARP server in our environ-ment.It has been shown that even low-end PC hard-ware can utilize bandwidth provided by 155.52 MbpsATM hardware very well3 [1], as long as the com-plex state-based TCP protocol is excluded from thedata path. This particularly applies if the proto-col architecture permits direct copies from applica-tions to the network interface. Due to TCP's re-quired checksum computation reducing data copiesis not feasible. Still, Partridge argues that perfor-mance improvement techniques for TCP allow seam-less integration into a gigabit environment, reducingthe common case TCP/IP processing to as little as150 instructions [9].We were curious whether TCP actually is a \killer"for high-bandwidth applications on state-of-the-art3Using unidirectional transfer with a \single-copy" opti-mization, the theoretical limit has been approached even forPentium 90 machines equipped with less powerful boards basedon the Intel Neptune chip set.



PC machines. Encapsulation and protocol overheadlimits the achievable bandwidth for applications us-ing TCP to 134.5 Mbps for a maximum transmissionunit (MTU) size of 9180 bytes [4]. This is shown inFigure 2.
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TCPFigure 2: Theoretical achievable TCP bandwidth de-pending on message size.For measurements, the netperf utility has beenused [6]. No particular optimizations involving ker-nel changes have been made, thus making the resultsmore useful in practice. Only user-level-adjustableparameters, such as message size and socket options,have been varied. During all measurements the par-ticipating machines were otherwise unloaded.3 ExpectationsA number of performance problems regarding the us-age of TCP on high-speed links are well known [11].Inadequate socket bu�er sizes and inaccurate roundtrip time estimation may even lead to temporarydeadlocks [8]. Protocol processing involving TCP isCPU-intensive, even if data copying overhead is min-imized by modern network adapters capable of DMAtransfer (as in our case).From measuring throughput over the loop-back in-terface4, an approximate bound could be placed on4netperf -l 60 -H localhost -t TCP STREAM -i 10,2-I 99,3 -- -m 65536 -s 65536 -S 65536

achievable throughput. Note that the ATM driver isnot involved when using the loop-back interface, IPpackets re-enter the IP layer via the loop-back driver.Therefore, loop-back numbers hint at machine perfor-mance regarding TCP/IP processing. For example,a Pentium-100 running Linux achieved a loop-backthroughput of 84 Mbps, thus already practically pre-cluding the possibility of achieving the theoreticalmaximum TCP throughput for this machine. Forcomparison of the results, we refer to the netperf re-sults database [5]: For instance, TCP loop-back re-sults for P-100 machines running Win95 indicate thatthe surprisingly bad number for Johann is no error.Machine OperatingSystem Through-put (inMbps)Sun (Kastor) SunOS 408.88PPro-200 (Christian) Linux 347.25P-100 (Carola) Linux 84.42PPro-200 (Maria) WinNT 338.85P-100 (Johann) WinNT 14.23Table 1: Loop-back device throughputSocket bu�er size5 has a direct inuence on thegranularity of read() and write() system calls andthe advertised TCP window size. Assuming a roundtrip time of 1ms and an available bandwidth of135Mbps, the bandwidth-delay product is 16:8KB,giving a lower bound on the required socket sizes.Furthermore, it is recommendable that the socket re-ceive bu�er is an even multiple of TCP's maximumsegment size (MSS6) and should hold at least threeTCP segments [10]. TCP implementations may raisethe socket bu�er size to the next even multiple ofthe MSS size. Therefore, we could reasonably expectto see good performance starting with 32KB socketbu�ers.In addition, larger-sized messages should also out-perform smaller-sized messages: The reason con-5SO RCVBUF and SO SNDBUF are the generic socket optionswhich allow changing the default socket bu�er size, which is64KByte for Linux TCP sockets. The maximum socket bu�ersize in Linux is 128KB.6For IPv4, MSS =MTU � 40Bytes



sists in the reduced number of system calls, lowerper-message protocol overhead, and lower TCP pro-cessing overhead. By default, TCP does not sendsmall messages immediately if there is outstandingunacknowledged data, rather it assembles segmentssmaller than the MSS into larger segments to im-prove throughput (Nagle's algorithm|the socket op-tion TCP NODELAY disables this behaviour.).For high performance networks the maximum sizeof the TCP sliding window can severely restrict per-formance. However, in the LAN environment, thebandwidth-delay product is still small. Linux sup-ports the window scaling option, potentially allowingwindows of size 230 bytes.The hardware purposely chosen for the experimentlets us expect huge performance di�erences for P-100and PPro-200 class machines. (The PPro machinesare roughly 3 times as fast as P-100 machines, con-sidering integer performance.) The Sun machine wasexpected to perform about as well as the PPro-200machines; in addition, the memory subsystem of theSun is faster than the PC architecture. We did ex-pect the CPU speed to cause performance di�erences,while we assumed the I/O bandwidth of the PCI bus(60-70MBps) to be su�cient.4 TCP ThroughputTCP bulk data throughput was measured in thefollowing way: netperf -l 60 -H 141.76.12.44-t TCP STREAM -i 10,2 -I 99,3 -- -m 8192-s 65536 -S 65536. That is, netperf repeatsmeasurements until they obey the de�ned con�denceinterval (which is 97.5%-100% in this case). Theinuence of message size (1 : : : 65536 bytes) andsocket bu�er size (32KB and 64KB) was evaluated.Socket Bu�er Size. As expected, a larger socketbu�er always had a non-negative inuence onthroughput. Linux did not adapt the socket bu�ersizes to the next higher multiple of the MSS whichwe interpret as a possible reason for Linux pro�tingmore from bigger socket bu�er sizes than WindowsNT did (see Figure 3). For the remaining throughputnumbers, the default 64KB socket bu�ers are used.
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Windows NT 64kFigure 3: Throughput for 32KByte and 64KBytesocket bu�er sizes on PPro-200 machines for Linuxand Windows NT (in Mbps).TCP Send Performance. This paragraphpresents results for send performance of both the\fast" and \slow" class of machines for WinNT andLinux. As mentioned in Section 3, small messageschallenge primarily the protocol processing withinthe sender. In contrast, for larger messages, receiverperformance becomes critical. Figure 4 sketchesdata path and required copies for write() calls. Ap-plication data is copied into kernel memory. Linuxuses|in contrast to BSD's mbufs|fast linear bu�ers(sk buffs). In-kernel bu�ers are then copied by thenetwork interface card into the internal send FIFOand transmitted. No CPU involvement is necessaryfor the last data copy (DMA). Thus, write() callsare possible with a single CPU initiated copy.
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(tx FIFO)Figure 4: Write data pathAs was estimated from the discouraging loop-backperformance (Section 3), we found send performanceon \slow" Pentium-100 hardware exceedingly betteron the Linux machine vs. the WinNT machine (Fig-ure 5). For medium sized messages (e.g., 1024 bytes)a more than three times higher throughput under



Linux was observed, the ratio of peak performancesgives 112:1260:99 = 1:84.
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Figure 5: TCP throughput for slow senders.We repeated the previous scenario with more pow-erful PPro-200 sender machines. Both under WinNTand Linux the theoretical maximum bandwidth hasbeen approached relatively close (up to 88.5 percent).Figure 6 gives the graph.Similar to the previous scenario, raising the mes-sage size to 32KB and 64KB results in lower through-put which particularly a�ected the Linux machine.We explain this e�ect by the sender overrunning thereceiver's NIC bu�ers with large messages, causingcell loss and subsequent PDU and packet loss.TCP Receive Performance. As can be seen fromFigure 7, read() calls require an extra data copy.Typically, a receive interrupt activity has to identifythe higher-level protocol of a PDU, allocate kernelmemory, copy the PDU into the socket bu�er andreturn the old bu�er to the ATM device driver. Inaddition, in-kernel control ow is divided into the in-terrupt activity and the read() activity initiated bythe receiving application, which blocks until data ar-rives.As in the previous paragraph, we isolated TCP re-ceive performance by selecting the Sun machine assender. The performance graph of both the slowWinNT and the slow Linux machine is given in Figure
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Figure 6: TCP throughput for fast senders.
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(interrupt)(rx queue) Figure 7: Read data path8, showing a performance di�erence of 49% in Linux'favour. Only less than half (Linux) or less than athird (WinNT) of the available bandwidth could beused.As a �nal throughput experiment, receive perfor-mance of the PPro machines was measured (Figure9). We got almost identical results for both ma-chines, each utilizing about 75% of the theoreticalbandwidth. Note that, recalling Figure 3, the Linuxmachine can receive at still higher data rates. There-fore, the last scenario hints at the Sun's send perfor-mance as limiting factor.TCP Peak Performance Summary. This para-graph combines the observed peak performances.Contrary to the naive expectations, we found the op-timum message size to be in the [4096 : : :16384] bytesinterval. That is, for those messages sizes no through-put anomalies|such as lower throughput caused byreceiver overruns|were observed. The achieved peaktransfer rates are given in tables 2 and 3, each includ-ing performance numbers for communication with thereference machine (Sun).When comparing the numbers for Linux and Win-
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Figure 8: TCP throughput for slow receivers.LinuxReceiverSender P100 PPro200 SunP100 - 98.84 112.12PPro200 33.80 111.65 119.12Sun 64.57 102.95 -Table 2: Linux TCP peak transfer rates (in Mbps)for 64KB-sized socket bu�ers.dows NT, Linux outperformed Windows NT partic-ularly on slow (P-100) hardware. If running on fasthardware, throughput relatively close to the theoret-ical maximum value of 134.5 Mbps can be achieved.For small messages, protocol and system call over-head dominates and results in a high load at thesender. For large messages, the memory subsystem ofthe receiver cannot yet preserve the throughput androutinely loads the CPU fully.5 TCP Request{Response Per-formanceFor request{response protocols measurement ofthe TCP round trip time is most signi�cant. Thefollowing command line gives an example for themeasurement technique used: netperf -l 60 -H
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Figure 9: TCP throughput for fast receivers.Windows NTReceiverSender P100 PPro200 SunP100 - 59.20 60.99PPro200 38.40 104.29 113.17Sun 43.31 102.38 -Table 3: Windows NT TCP peak transfer rates (inMbps) for 64KB-sized socket bu�ers.141.76.12.46 -t TCP RR -i 10,3 -I 99,5 ---r 64,64 -s 0 -S 0. There was no need to ex-plicitly disable TCP's Nagle algorithm since suchping-pong communication is not a�ected. The vary-ing size of request and response data|taken fromnetperf's default test suite for request{responsetests|reects typical client-server communication(table 4).Firstly, as a typical scenario communication of slowclients (Pentium-100) with fast servers (PPro-200) isexamined. For comparison, the graph for communi-cation of the same client with a di�erent server (theSun machine|Kastor) is being given in Figure 10.All request{response measurements resulted inLinux consistently outperforming Windows NT by alarge margin.Secondly, Figure 11 shows achieved overall peakperformances, using PPro-200 computers for both



Request size Response size1 164 64100 200128 8192Table 4: Request and response message sizes (inbytes)
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P100 (Linux) - SunFigure 10: Number of request{responses per secondfor client-server communication.Windows NT and Linux. For Linux, a performanceof 3387.43 requests and responses per second hasbeen observed, corresponding to an application-to-application round trip time of 1s3387:43 = 0:295ms. Onthe same hardware, Windows NT achieved a roundtrip time of 1s2250:87 = 0:444ms. For a more realis-tic request size (128 bytes) and response size (8192bytes), round trip time increased to 0.964 ms (Linux)and 1.372 ms (Windows NT). This gives an speedadvantage of 43:7% : : :50:5% for Linux, comparingrequest{response performance on identical PPro-200machines.It is worth stating that additional measurementswith \slow" P-100 servers running Linux o�ered bet-ter response times than both a PPro-200 runningWindows NT and the Sun Ultra (answering null-RPCs).
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Figure 11: PPro-200 WinNT vs. Linux: Number ofrequests and responses.6 ConclusionWe compared achievable application-level perfor-mance of TCP over ATM for two di�erent operatingsystems. We did not interpret all numbers in detail,some have to be taken \as is". This is partly dueto missing insight into the WinNT protocol architec-ture, and to a lesser extent into the SunOS protocolimplementation. Nevertheless, some observations canbe made.State of the art PC hardware can utilize availablebandwidth over ATM well, even when running a com-plex transport protocol on top of ATM. However, wefound that CPU load on the participating machines isvery high. It can be concluded that host performanceis still relatively low in comparison to the bandwidtho�ered by the network. In other words, there is nourgency to replace the 155.52 Mbps ATM technologyin the local environment by faster technologies.When comparing protocol stack and driver perfor-mance of Windows NT and Linux, a number of pointscan be raised:1. Performance achievable at application levelmainly depends on CPU processing power ande�cient implementation of the TCP/IP stack.2. TCP throughput is in the same ballpark forboth Linux and Windows NT using fast ma-



chines. However, for slower hardware (e.g., Pen-tium 100) there is a clearly visible performanceadvantage for Linux.3. From an application point of view, most consis-tent throughput results have been achieved withmessage sizes between 4KByte and 16KByte.4. TCP request{response performance is muchhigher for Linux, yielding better round trip timesin the order of 50%.5. Reviewing the assumptions made in Section 3,the request{response measurements proved thatLinux is able to achieve round trip times signif-icantly smaller than 1ms. It follows that evenin the local environment the bandwidth-delayproduct is high enough to make traditional TCPwindow sizes (i.e., less than 64KB) potential bot-tlenecks.Useful numbers we left out in this presentation in-clude the exact CPU utilization of the machines. Thisis owed to the lack of applicable quantitative mea-surement tools on the platforms examined.7 AcknowledgementsThe author wishes to thank Robert Baumgartl for hiscomments, and Sven Rudolph for supplying con�gu-ration details and general insights.References[1] Werner Almesberger. High-Speed ATM net-working on low-end Computer Systems. Tech-nical report, LRC Lausanne, 1995.[2] Werner Almesberger. ATM on Linux.http://lrcwww.ep.ch/linux-atm/, 1997.[3] Martin Borriss and Uwe Dannowski. LinuxSupport for FORE Systems PCA-200E NIC.http://os.inf.tu-dresden.de/project/atm/, 1997.[4] John David Cavanaugh. Protocol Overhead inIP/ATM Networks. Technical report, MinnesotaSupercomputer Center,Inc., 1994.

[5] Rick Jones. The Netperf Results Database.available from http://www.cup.hp.com/net-perf/numbers/NetperfBrowse.html.[6] Rick Jones. The Public Netperf Homepage.http://www.cup.hp.com/netperf/, 1997.[7] M.Laubach. Classical IP and ARP over ATM.RFC 1577, 1994.[8] Kjersti Moldeklev and Per Gunningberg. Dead-lock situations in TCP over ATM. In IFIPWorkshop on Protocols for high speed networks,August 1994.[9] Craig Partridge. Gigabit Networking. AddisonWesley, 1994.[10] W. Richard Stevens. Unix Network Program-ming. Prentice-Hall, 2nd edition, 1998.[11] V.Jacobson, R.Braden, and D.Borman. TCPExtensions for High Performance. RFC 1323,1992.


